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An exact expression for the joint p.d.f, which, at 
least for small values of n, can often be accurately 
evaluated, can be obtained in the important case in 
which all the components of the random vector x may 
be non-zero only in a bounded range, say -xM < xi < 
+xM, i = 1 , . . . ,  n (Weiss, Shmueli, Kiefer & Wilson, 
1985; Shmueli & Weiss, 1985). One can then expand 
the joint p.d.f, p(x) in a Fourier series 

p(x)=(2xM)-"~ Cnexp(-wiurx/xM) (A3) 
u 

and write the Fourier coefficients, in the conventional 
manner, as 

x M X M 

Co = ~ . . .  ~ p(x) exp (~iurx/x~) d"x. (A4) 
- - X  M - - X  M 

Since, however, the random variables, xi, are confined 
to the [--XM, +XM] range, the probability of finding 
any of them outside this range is necessarily equal to 
zero. We can thus replace, with no loss of generality, 
the limits of integration in (A4) by +oo and obtain 
for the Fourier coefficients an expression analogous 
to (A1). In fact, the Fourier coefficients, Co, are then 
just the values of the characteristic function at the 
points: (~Ol,..., OJ,,)=(WUffXM,..., WU,,/XM). The 
practical significance of (A3) is now conditioned by 
our ability to evaluate the characteristic function, and 
by the convergence properties of the resulting Fourier 
summation. 

In some applications one has to deal with random 
vectors in which not all the components are indepen- 
dent. If, for example, x = (xl, x2, x3) and x3 depends 
on xl and x2, we shall still have a triple Fourier series 

to compute, but the integration leading to the charac- 
teristic function (or the Fourier coefficients) involves 
only the independent variables. For examples of such 
situations see Shmueli & Weiss (1985) and the deriva- 
tion in the text. 
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Abstract 
Certain general algebraic formulas for computing 
triplet phase invariants become accessible when struc- 
tural information is available concerning the replace- 
ment atoms in isomorphous replacement or the pre- 
dominant type of anomalously scattering atoms in 
one-wavelength anomalous dispersion experiments. 
The formulas of interest are presented and subjected 
to a number of test calculations to obtain insight into 
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their accuracy and to determine the effects of errors 
in the data. The formulas are simple to calculate and 
some possible strategies for their use are discussed. 

Introduction 
On the basis of certain mathematical and physical 
considerations that pertain to isomorphous replace- 
ment or anomalous dispersion experiments, rules 
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(Karle, 1983, 1984a, b) and algebraic formulas 
(Karle, 1984c, 1985a) were derived for the evaluation 
of triplet phase invariants. Among these was a general 
formula, applicable to both types of experimental 
data and not yet evaluated, that requires information 
concerning the structure factor magnitudes for the 
structure of the heavy atoms (or anomalously scatter- 
ing atoms). This general formula is investigated here. 
Further accuracy would accrue if the phases for the 
heavy-atom structure were also known. This latter 
information is not mandatory, however, since the 
heavy-atom phases enter the formula as triplet phase 
invariants which can often be set equal to zero to 
good approximation. In the case of anomalous disper- 
sion the formula is applicable when there is one type 
or one predominant type of anomalous scatterer. In 
the case of isomorphous replacement, the formula 
permits the calculation of the cosines of phase 
invariants in the range from -1 to 1 and for 
anomalous dispersion it permits the calculation of 
the sines of phase invariants in the range -1  to 1. 

This investigation may be regarded as a further 
exploration of the mathematical tools available for 
application to the analysis of macromolecular struc- 
ture. The particular role that triplet phase invariants 
may play remains to be determined. When the heavy- 
atom structure is known, it is possible in single 
isomorphous replacement to obtain numerous initial 
phase values that could possibly be extended and 
refined by use of the triplet phase invariants. 

Diffraction experiments concerning isomorphous 
substitution of macromolecules are normally accom- 
panied by anomalous dispersion effects. Because both 
types of data are readily measurable, it can be expec- 
ted that data of sufficient accuracy to permit the 
application of both techniques will often be attain- 
able, as the history of macromolecular structure deter- 
mination has already shown (e.g. Adman, Sieker & 
Jensen, 1973). The combining of both techniques 
would be the optimal way to handle the data. A way 
to do this with the use of exact algebraic equations 
has already been discussed (Karle, 1984c). Here 
single isomorphous replacement and one-wavelength 
anomalous dispersion are treated individually as if 
the other did not exist. 

A way to obtain essentially unique values for phase 
differences from one-wavelength anomalous disper- 
sion data, i.e. the two intensities measured at h and 
-h ,  has been described (Karle, 1985b). As has been 
previously noted (Karle, 1985b), the possible 
existence of such a calculation was indicated by the 
uniqueness of values for the triplet phase invariants 
derived by Hauptman (1982b), Giacovazzo (1983) 
and subsequently by Karle (1984a). Knowledge of 
the structure of the predominant type of anomalous 
scatterers is not required to obtain the phase differ- 
ences but, if it is known, phase values for the structure 
of the macromolecule can be obtained from the values 

Table 1. Quantities involved in the applications of  (1) 
to single isomorphous replacement and one-wavelength 

anomalous dispersion data 

The quantities m~l~ , m~Z,h and ,~3.h are defined by the corre- 
sponding entries in columns 2, 3, 4, respectively. 

Case 
m m~l. h m~Z,h m~S. h 
i Fhvu Fhv Fhn 

f T h e  a s t e r i s k  d e n o t e s  c o m p l e x  c o n j u g a t e .  

of the phase differences. Evaluations of the triplet 
phase invariants of the type examined here may be 
useful for refining the phase values for macro- 
molecules. 

Theory 
A general formula has been derived (Karle, 1984a, 
equation 31) of the form 

cos (m~O2,h + .#2.k + mCP2,ff,+r,) -- ,,#3.h- m~O3,k- m~O3,ff,+r,)) 

-- r/I , .~3.~, .~3,k, .~3,¢~+rol,  (1) 

where 

T = (I m~,,d- Im&,~l)(Im&,kl- Im&,d) 
x ( l~ ,<a+~ l -  I m~,<~+~>l). (2) 

There are numerous definitions of the ,,~,h ( i=  
1, 2, 3), listed in a recent publication (Karle, 1985a). 
When m = i, the ~ concern quantities associated with 
isomorphous replacement and when m = 1, the 
concern quantities associated with anomalous disper- 
sion, as shown in Table 1. 

For isomorphous replacement, 

Fhpn - Fhe = Fhu, (3) 

where FhVH is the structure factor for a macro- 
molecule substituted with heavy atoms, Fhe is the 
structure factor for the original macromolecule and 
Fhn is the structure factor for the structure formed 
by the heavy atoms alone. 

For anomalous dispersion, 
a a ~  

F~h-- F*K = Fxh-- Fx~, (4) 

where Fxh is the structure factor for a macromolecule 
containing anomalous scatterers at some incident 
wavelength, A, and FIb is the structure factor for the 
structure formed by the anomalous scatterers. For the 
case of one type of anomalous scatterer present 
(Karle, 1984a, equation 10 when j = 2) 

a • p n F ~ -  FT,* = 2 , ( : /~ ,OF~,h,  (5) 

where f '  is the imaginary correction to the normal 
atomic scattering factor, f~2.h, of the anomalous scat- 
terers and F~.h is the structure factor for the 
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anomalous scatterers, scattering as if there were no 
anomalous effects present. 

With the definitions in Table 1 and use of (5), it is 
possible to calculate the right side of (1) and thereby 
evaluate the cosine function. The [m~rl,hl and I m~2.hl 
are obtained from experimental measurement and the 
]m~3,h[ are obtained from derived information, for 
example, the heavy-atom structure. The angles on the 
left side of (1) are associated with the corresponding 
[m~2,h[ and I,,~r3,hl . It had not been brought out in the 
original derivation of (1) that, with the approxima- 
tions used, the same function on the fight side of (1) 
would be associated with any of the eight cosine 
functions obtained by substituting any or all of the 
rn~2,h, rn~O2,k and m¢2.(G+~) with the corresponding ,.¢~.h, 
m~O~.k and ,.~o~.(~+~). In other words, the formula is 
insensitive to the distinction between the values of 
,.~01.h and mCP2.h. In recognition of this and for the 
purpose of facilitating quantitative comparison 
between the cosine function and the right side of (1), 
the equation is rewritten 

COS ( m(~h + mf~k -~ m(/~(fi+~,.) -- m(~3,h -- m(s03,k -- m{~3,(fi+~.)) 

"" Y / lm~;3,hm~;3,km~;3,(K+~)l, (6)  

where 

m(~h = 0" 5(m~l ,h  "[- m~2,h)- (7) 

This becomes for isomorphous replacement (m = i) 

i~h = 0" 5( ~hPH "[- ~hP ) (8)  

and for anomalous dispersion (m = 1) 

i Ch = 0" 5(¢~h -- ¢~). (9) 

The argument of the cosine function on the left side 
of (6) contains a triplet phase invariant that is com- 
posed of average phases, as defined in (7), and a 
second triplet phase invariant composed of phases 
associated with the heavy-atom structure or 
anomalous scatterers. If the heavy-atom structure is 
known, the value of this second triplet phase invariant 
can be calculated and from knowledge of the value 
of the fight side of (6), the value of the triplet phase 
invariant of interest mCh "31- m(~k "3t- m~+k can be evalu- 
ated, usually with a twofold ambiguity. 

Under certain circumstances, the exact formulas 
for isornorphous replacement 

cos ( ~ h p  - ,ph.) = (I Fh~. 12 -[Fhp[ 2 

-IFh.12)/21F~IIF~.I (10) 
and 

COS ({~hPH -- ~ h H )  = (I F~,~.. I =-  IFhPI 2 

+[Fh,12)/2lFhp,[lFh, I (11) 

may be useful, namely, when the right sides of (I0) 
and (I I) have values in the vicinity of ±I. In such 

cases, the ~hP or ~HPH are approximately equal to 
or ~r away from ¢h, .  

Test calculations 

Test calculations were performed on exact data and 
also on data into which errors were introduced. The 
data were computed at 2.5/~ resolution for Cu Ka 
radiation from the coordinates for cytochrome 
c550.PtC124 - from Paracoccus denitrificans (Timkovich 
& Dickerson, 1976). For the isomorphous replace- 
ment tests, the Pt atoms were regarded as comprising 
the heavy-atom structure. For the anomalous disper- 
sion tests, the structure factors were computed in two 
ways. One calculation introduced anomalous effects 
from the Pt atoms alone and the second included 
anomalous effects from the Pt, Fe, S and C1 atoms. 
The first calculation models the case when there 
would be only one type of anomalous scatterer. This 
calculation not only represents an important experi- 
mental case, but also provides a basis of comparison 
for determining the effect on the errors of including 
all four types of anomalous scatterers in the data 
while treating the data as if the Pt atoms were the 
one predominant type of anomalous scatterer. 

Isomorphous replacement 

Calculations of values for triplet phase invariants 
in an isomorphous replacement experiment by use of 
(6) are presented in Table 2. Appropriate definitions 
for the use of (6) are given in Table 1. The calculations 
were based on 400 independent reflections except for 
row 6 in which 800 independent reflections were 
selected from among the 3252 acentric ones available 
from 2.5/~ data. They were chosen on the basis of 
the largest values for IIFp.l-IFpll. The first column 
shows the number of invariants that were formed. 
When a cut-off value different from zero is given in 
the second column, it means that reflections were 
omitted from the calculations when the values for 
their corresponding IFpI and IF~.l were less than the 
cut-off value. For those data into which random errors 
were introduced (rows 3-7), an acceptance criterion 
was used for handling those instances in which the 
fight side of (6) exceeded 1.0. If the fight side 
exceeded 1.5, the calculation was rejected, otherwise 
the value was set back to 1.0. 

In order to obtain an estimate of the accuracy of 
the calculations obtainable from (6), two types of 
error were computed, type I and type II. Type I is 
an average magnitude of error 

([~-cos-l[right side of (6)]1), (12) 

where • represents the sum of angles (of known 
value in the test problems). The arc cosine function 
is generally twofold ambiguous and may also require 
a shift of +27r to find the value closest to that of the 
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Table 2. The evaluation of average triplet phase 
invariants in isomorphous replacement by use of (6) 

from 2.5 A data for cytochrome c550.PtC12- 

The calculations were based on 400 independent reflections except 
for row 6 in which 800 independent reflections were chosen from 
among the 3252 acentric ones available on the basis of  the largest 
values for IIFpHI-IF~ll. The last row was added to show the effect 
of  including centric reflections in the data set and comparing the 
result from (6) to the correct value for a single triplet phase 
invariant, the one having the largest triple product of  associated 
structure factor magnitudes, instead of  the average of  eight of  
them. For those data into which random errors were introduced 
(rows 3-7), an acceptance criterion was used for handling those 
instances in which the right side of  (6) exceeded 1.0. If  the right-side 
value exceeded 1.5, the calculation was rejected, otherwise the 
value was set back to 1.0. 

Number 
of Cut-off for 

invariants I F~l, IF, HI 
18 933 0 
17 110 150 
15940 0 
13 125 150 

6453 0 
55 880 0 

5524 150 
18 007 0 

Av. 
magnitude Av. 

of  error magnitude Av. 
for IFpI of error magnitude 

I FpHI, levi type I of error 
(%) (rad) type II 

0 0.42 0"30 
0 0.38 0.27 
5 0"59 0"37 
5 0"57 0.34 

10 0-81 0.49 
10 0.82 0.54 
10 0"76 0.46 
0 0.19 0.08 

known ~. In computing (12), the latter value of the 
arc cosine was used. The purpose of the computation 
was solely to present an estimate of the accuracy in 
radians. Type II is an average magnitude of error 

(Icos b - r i g h t  side of (6)1). (13) 

Type I and type II errors appropriate to the calcula- 
tions in Table 2 are shown in columns 4 and 5, 
respectively. 

It is seen from Table 2 that large numbers of 
invariants can be computed with no apparently 
serious increase in the average error. This is shown 
by the calculations in rows 5 and 6 which differ in 
the use of 400 and 800 independent data, respectively, 
for the computation of the values of the invariants. 
It would appear that the number of independent data 
used could be safely increased and significant 
increases in the number of invariants computed would 
also accrue from the use of one- and two-dimensional 
data. Having a cut-off value for IF.I and IFp~l does 
not appear to have a great effect on the average error 
of the calculations, but it may prevent the occurrence 
of large errors from structure factors of small magni- 
tude. Significant benefits would be obtained from 
keeping the average error in the structure factor mag- 
nitudes in the vicinity of 5% rather than 10%. The 
calculation of the 55 880 invariants and associated 
errors in row 6 of Table 2 required about 1 min and 
40 s on the Cray X-MP/12 with the use of a rather 
simple program. 

Table 3. Average magnitude of discrepancy in isomor- 
phous replacement between sets of eight triplet phase 
invariants and their averages calculated from 2.5 A 

data for cytochrome c550.PtC12- 

In any set, the eight invariants are formed by adding tphp or q~hPn, 
~0kp or ~Okp H and ~0(l[i+i~)p o r  ¢p([t+~Op H. T h e  invariants in the first 
row were formed from 400 and those in the second row were 
formed from 800 independent reflections selected from the 3252 
acentric reflections on the basis of  the largest values for the I IFpH I - 
IFpl l .  Since (6) is interpreted as providing the values of  the average 
triplet invariants, this computation gives some insight into how 
well an average represents any member of  the set of  eight. 

Av. magnitude 
Number  of  of  error 
invariants (rad) 

18 933 0.34 
99 367 0.37 

As implied by the left side of (6), only the values 
of average triplet invariants, m(~h "]- m~k ~t. m(~+k, are 
expected to be the useful and meaningful context in 
which the invariants will be obtained from theory 
with the use of experimental data. The average 
invariants are the averages of eight different invariants 
formed by adding q~hP or ~0hpH, q~kP or ~0kpn and 
~o<~+~)p or ~P<~+~)PH. It is of interest to gain some insight 
into how well the value of an average invariant rep- 
resents the value of any one member. Calculations 
of the average magnitude of error between the value 
of the average invariants and those of their eight 
members are shown in Table 3. The invariants in the 
first row were formed from 400 and those in the 
second row from 800 independent reflections selected 
from the 3252 acentric reflections available on the 
basis of the largest values for the [[F.HI-IFpI[. The 
first column of Table 3 gives the number of average 
invariants and the second gives the average magnitude 
of error in radians for all of them. 

It would appear that a large number of initial phase 
values may be obtained from (10) and (11) with 
acceptable accuracy. This is indicated by the results 
presented in Table 4. The reflections were ordered 
according to the largest values for the IIFp,~I-IF~II 
and the number of acentric reflections available was 
3252. The samples consisting of 400 and 800 reflec- 
tions were ordered subsets of the latter. The second 
column indicates limits for the magnitude of the right 
sides of (10), (11). The limit of 0.9397 implies that 
as much as a calculated 20 ° difference between the 
two angles would be acceptable and 0.7660 implies 
that as much as a 40 ° difference would be acceptable. 
When there are errors in the data, as shown in the 
third column, the actual differences that are accepted 
can exceed 20 or 40 ° . Columns 4-7 show the numbers 
of phases, ~0hp and q~hPH, that were set equal to the 
corresponding ~PaH and the average magnitude of 
error. It is seen that little is gained in terms of accuracy 
by restricting the number of reflections and, evidently, 
fewer phases are evaluated under such circumstances. 
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Table 4. The evaluation of  individual phases, q~ht, and q~Pn, in isomorphous replacement by use of  (10), (11) 
and 2.5/~ data for cytochrome c550.PtC12- 

Those values of  the phases, tphp and ~hPn, that were determined to be sufficiently close to the values of  the corresponding ~Ohn for 
the heavy-atom structure by use of  (10), (11) were set equal to the ~Phn. This was done when the values of  the fight sides of  (10), (11) 
were equal to or larger than the values in column 2, otherwise the phases were not evaluated. The subsets of  400 and 800 reflections 
were selected on the basis of the largest values for the differences, II Fpnl-IF~ll. Average percentage random errors introduced into the 
data are indicated in column 3. 

Av. magnitude Av. magnitude Av. magnitude 
Limit for of error for of error of error 

Number of Ifight sidesl IFpI, IF~HI, IFHI Number of for ~e Number of for ~Pn 
reflections of (10), (11) (%) ~e accepted (rad) ~Pn accepted (rad) 

3252 0.9387 0 721 0.17 843 0-17 
3252 0"7660 0 1463 0"35 1629 0"34 
3252 0"9397 5 856 0"40 932 0'36 
3252 0"7660 5 1403 0"47 1591 0"43 
3252 0"9397 10 1094 0"57 1152 0"51 
3252 0"7660 10 1522 0"59 1698 0"54 
800 0"9397 10 571 0"51 598 0"45 
800 0"7660 10 665 0"51 734 0"46 
400 0"9397 10 333 0"46 348 0"41 
400 0.7660 10 364 0"47 388 0"41 

The one- and two-dimensional data in the space group 
of cyto~:hrome c550, P212121, are centric. Application 
of (10), (11) to such data should give many errorless 
phase evaluations. 

A possibly useful strategy in single isomorphous 
replacement would be to use (10) and (11) to obtain 
a large set of initial phase values and then apply the 
evaluations of the triplet phase invariants from (6) 
or from probabilistic methods (Fortier, Moore 
& Fraser, 1985) an extension of an analysis of 
Hauptman (1982a) to refine further and extend the 
phases by use of, for example, a least-squares pro- 
cedure. The work of Fortier et al. is relevant to the 
analysis in this paper because it presents a formula 
that can evaluate the cosines of triplet phase 
invariants having any value in the range - 1  to + 1. 

It is possible to compare only the results in the last 
row of Table 2 of this paper directly with those in 
Table 2 of Fortier et al. The other entries in Table 2 
are based on average invariants that are averages of 
eight of them, as noted previously. In addition, several 
items in Table 2 were computed from data containing 
random errors. The entries in Table 2 of Fortier et al. 
concern individual invariants computed from exact 
data. Comparison shows that the results of the last 
row of Table 2 of this paper are of an accuracy similar 
to the best calculations given in Table 2 of Fortier et 
al. The intention of the presentation in the first seven 
rows of Table 2 of this paper is to give an insight into 
what might be expected in actual experimental cir- 
cumstances. The results would be improved if centric 
data were included in the calculations. 

Anomalous dispersion 

Calculations of the values for triplet phase 
invariants in an anomalous dispersion experiment 
involving one predominant  type of anomalous scat- 

terer by use of (6) are presented in Table 5. The 
radiation used was Cu Kt~. Appropriate definitions 
for the use of (6) are given in Table 1. For m = 1, we 
find from (5) that 

m~t)3,h = 7T/2 "a t- ~ , h ,  (14) 

where ~P~,h is the phase associated with F~,h, the 
structure factor in (5) for the single type of anomalous 
scatterers present, scattering as if there were no 
anomalous effects. The same mathematics holds 
approximately when one predominant type of 
anomalous scatterer is present among others. For the 
case of one predominant  type of anomalous scatterer 
present, (6) becomes from use of (9) and (14) 

sin (lCh + l ~ k  "1- l ( ~ + k  - ~O~,h -- ~O~,k-- ~2,(K+k)) 

"" -- T / l m~;3,hm~;3,km~;3,(fl+K)[, ( 1 5 )  

where T is obtained from (2) and Table 1 and the 
denominator  of the fight side of (15) is obtained from 
taking appropriate magnitudes in (5), e.g. 

,Y:3,h = 2(f'/f~.h)lF'~,hl. (16) 

The calculations shown in Table 5 were based on 
400 independent reflections except for the sixth row 
in which 800 independent reflections were chosen 
from among the 3252 centric ones available from 
2.5/~ data on the basis of the largest values for 
IIF  I-IF dl. The first column shows the number of 
invariants that were formed. The structure factors 
used for the calculations in rows 1-4 were based on 
the Pt atoms alone as the anomalous scatterers. In 
all cases, the data were analyzed as if the Pt atoms 
were the sole predominant  anomalous scatterers. For 
the second row, in which a cut-off value different 
from zero is given, reflections were omitted from the 
calculations when the values for their corresponding 
I F~hl and I F~l were less than the cut-off value. Errors 
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Table 5. The evaluation of average triplet phase invariants in anomalous dispersion by use of (15) from 2.5/~ 
data for cytochrome c550.PtC12- 

The calculations were based on 400 independent reflections except for row 6 in which 800 independent reflections were chosen from 
among the 3252 acentric ones available from 2.5/~ data on the basis of  the largest values for IIF~d-IF~dl. The structure factors used 
for the calculations in rows 1-4 were based on the Pt atoms alone as the anomalous scatterers, whereas those in rows 5 and 6 were 
based on the C1, S, Fe and Pt atoms as the anomalous scatterers. In all cases, the data were analyzed as if the Pt atoms were the sole 
predominant anomalous scatterers. The radiation used was Cu Ka. Errors were introduced for the individual differences, IIF~d -lentil, 
by inultiplying randomly by values that ranged from 0.2 to 1.8, accounting for the 40% average error listed in the last four rows of  
column 3. The values of  IF~.l and IF~d were suitably adjusted to account for the changed difference. For those data into which errors 
were introduced (rows 3-6), an acceptance criterion was used for handling those instances in which the fight side of  (15) exceeded 
1.0. If  the right side exceeded 1.5, the calculation was rejected, otherwise the value was set back to 1.0. 

Av. magnitude Av. magnitude Av. magnitude 
of  error for of  error of  error Av. magnitude 

Number  of  Cut-off for I Fxhl -- I F~l I F2%1 type I of  error 
invariants IF~l, IF~d (%) (%) (rad) type II 

16 662 0 0 0 0.41 0.28 
16 099 100 0 0 0.42 0.28 

5960 0 40 3 0.80 0.47 
6046 0 40 5 0.79 0.47 
3141 0 40 3 0.88 0.56 

41797 0 40 3 0.83 0.55 

were introduced for the individual differences, [Fxh[- 
I F d, by multiplying randomly by values that ranged 
from 0.2 to 1-8, accounting for the 40% average 
magnitude of error listed in the last four rows of 
column 3. Random errors of average magnitude 3 
and 5% for IF~..I are listed in the last four rows of 
column 4. For those data into which errors were 
introduced (rows 3-6), an acceptance criterion was 
used for handling those instances in which the right 
side of (5) exceeded 1.0. If the right side exceeded 
1.5, the calculation was rejected, otherwise the value 
was set back to 1.0. Comparison of row 3 with row 
1 indicates that the acceptance criterion caused a 
dramatic drop in the number of invariants accepted. 
There may well be a better criterion so that more 
invariant evaluations could be accepted without sig- 
nificant loss of accuracy. It does not seem from com- 
parison of rows 1 and 2 in columns 5 and 6 that the 
introduction of the cut-off had a significant effect on 
the resulting errors in the calculations. The cut-off 
value for IF .l and IF d may, however, similarly to 
isomorphous replacement calculations, prevent the 
occurrence of large errors from structure factors of 
small magnitude. Errors of type I and type II in 
columns 5 and 6 are describable by use of (12) and 
(13), respectively, or, equivalently, by use of 

( [~ ' -s in-~[r ight  side of (15)]1) (17) 

and 

(Isin q~'-right side of (15)1), (18) 

where q~' represents the sum of angles on the left side 
of (15). The calculation of (17) was carded out in a 
fashion comparable to that for (12). A comparison 
of rows 3 and 4 in which the calculations were the 
same except for the different average magnitudes of 
error for the [F~,h[ indicates that even greater average 
errors in I F~..I could be tolerated. 

It is seen from Table 5 that large numbers of 
invariants can be computed without reaching unac- 
ceptable average errors. This is indicated by the calcu- 
lations in rows 5 and 6 which differ in the use of 400 
and 800 independent reflections, respectively, for the 
computation of the values of the invariants. The 
calculations for row 5 required 75 s on the Cray 
X-MP/12. It would appear from the indicated 
accuracies and the time involved that the number of 
independent reflections used could be readily 
increased beyond 800 with a consequent further 
increase in the number of invariants evaluated. 

The triplet phase invariants composed of average 
phases, lq3h + 1 ffk + 1~+~, that are evaluated by use of 
(15) are the averages of eight different invariants 
formed by adding ~Pxa or -~pas, q~ak or --tpa~ and 
~x.(s+~) or --q~a,(h+k). The values for the average 
invariants represent the eight different invariants 
rather accurately for cytochrome c550.PtC12-. A 
calculation of the average magnitude of difference 
between q~Xh and -q~as (Karle, 1985a, Table 3, column 
5, m = 1) for 2900 reflections and Cu Ka  radiation 
gave 0.07 rad. In these calculations data for which 
IF~,l and IF~d < 100 were not included, thus eliminat- 
ing the smallest magnitudes. 

It is possible that the measured data would be 
accurate enough to permit the evaluation of 
individual phases in a fashion similar to that for (10) 
and (11). The appropriate general equations are 

COS (m~02,h -- m~3,h) = (Im l.,I 2 -  I 2 

--Im~3..12)121m~=..llm~3.hl (19) 

COS (m~l.,-- m~. , )  = (I m~.,I  ~ -  Im~=.,I 2 

+ Im~3.d2)/21m~l.d I ~ . , I .  (20) 

where, for anomalous dispersion, case 1, ~P3.h is given 
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by (14), 

l~l,h = ~ h  (21~ 

1 ~P2,h = - - ~ A 6  (22) 

and I, l,hl, I, 2,hl and Ilia,hi are defined in Table 1 
and by taking the magnitude of (5). This gives 

sin (--~PAG-- ~2,~)=(IF~d2--1F~Kl=--4(f"/~,~)21n FE,hl ) '~ 2 

×[4(f"/f~,h)lGKIIF~.bl] -~ (23) 

sin (~Ah - ~2,h) -- (IF~hl2--1Farl2 + F2.d" 2) 

X[4(f ' / f~.h)lF;,hllF'~.hl]-L (24) 

Comparable equations for isomorphous replacement, 
(10) and (11), also follow from (19) and (20) and the 
use of Table 1. In a manner similar to that described 
for isomorphous replacement, (23) and (24) can be 
applied by specifying a magnitude somewhat less 
than unity that the right sides of (23) and (24) must 
attain. When this value or greater is attained, the sine 
functions may be set approximately equal to +1 or 
-1,  as appropriate, and then the -~A~ or ~Ah may be 
set approximately equal to ~ ,h+  zr/2 or ¢~,~-rr/2, 
corresponding to the values of +1 and -1,  respec- 
tively. This could give an initial set of values for a 
number of phases which could perhaps be refined 
and extended by use of computed values of triplet 
phase invariants from application of (15). 

There is an alternative way to obtain individual 
phase values by algebraic means. This has been 
described (Karle, 1985b). The phases evaluated by 
these means are the ~.h,  the phases corresponding 
to the structure factors for the structure of the non- 
anomalously scattering atoms. The formation and 
evaluation of triplet phase invariants consisting of 
the ¢~'.h has also been discussed (Karle, 1984c). 

Concluding remarks 

Formulas (6) and (15) provide values for triplet phase 
invariants in single isomorphous replacement and 
one-wavelength anomalous dispersion experiments 
when the structure of the replacement or that for a 
predominant anomalous scatterer is known. Actually, 
only the magnitudes of the structure factors for the 
replacement structure or the structure of the pre- 
dominant anomalous scatterer are required since the 
triplet phase invariants for the heavy-atom phases 
may be set equal to zero to good approximation when 
the associated products of structure factor magni- 
tudes are large. Such information is obtainable, for 
example, from application of the exact linear theory 
(Karle, 1980). When the latter theory is applied, there 
are also alternative ways to evaluate the triplet phase 
invariants (Karle, 1984c). 

The potential utility of (6) and (15) is indicated by 
the accuracy obtained in the test calculations when 
reasonable random errors are introducted into the 

data. The use of the formulas may be facilitated by 
the determination of initial values for a number of 
phases by application of (10) and (11) for isomor- 
phous replacement or (23) and (24) for anomalous 
dispersion when the phases associated with the 
replacement or the predominant anomalous scatterer 
structure are known. When (10), (11), (23) and (24) 
are used in the manner described, they give essentially 
unambiguous phase values. In general, however, they 
give values with a twofold ambiguity that may also 
be useful if, in the course of the application of the 
triplet phase invariants, the ambiguity could be re- 
solved by use of phase values developed by the 
triplet phase invariants combined with the initially 
determined essentially unambiguous phase values. 
Throughout the history of the application of isomor- 
phous replacement and anomalous dispersion, many 
ways have been developed to overcome the twofold 
ambiguity (see, for example, Fan Hai-fu, Han Fu-son, 
Qian Jin-zi & Yao Jia-xing, 1984). 

The use of (10), (11), (23) and (24) has the potential 
to establish the appropriate enantiomorph for a 
macromolecule. If the structure of the replacement 
atoms in single isomorphous replacement is centro- 
symmetric and the method is used independently of 
anomalous dispersion information, the enantiomorph 
will have to be established in some other way, e.g. by 
the use of the triplet phase invariants in some manner 
comparable to that used for small-molecule structure 
determination. One approach to this matter has been 
presented by Fan Hai-fu & Gu Yuan-xin (1985) and 
Yao Jia-xing & Fan Hai-fu (1985). 

It has been the intention in this paper to illustrate 
the potential information available in the individual 
techniques of single isomorphous replacement and 
one-wavelength anomalous dispersion from the use 
of certain algebraic formulas that can be computed 
quite rapidly. In actual practice, the potential would 
be enhanced if the techniques were combined. In 
addition to the formulas presented here, there are 
numerous algebraic (Ramaseshan & Abrahams, 1975) 
and probabilistic (Hauptman, 1982a, b; Giacovazzo, 
1983; Pontenagel, Krabbendam, Peerdeman & 
Kroon, 1983; Fortier, Moore & Fraser, 1985) formulas 
available for fashioning strategies for the analysis of 
experimental data. There are also relations from an 
exact algebraic analysis (Karle, 1980, 1984c, 1985b) 
which give an essentially unique result with one- 
wavelength anomalous dispersion data and, when 
used with exact data, give exact phase values. It is 
likely that optimal strategies will depend upon the 
quality and character of the data. The formulas and 
procedures considered here should, in any case, 
enhance the variety of options that can be considered. 

I wish to thank Mr Stephen Brenner for writing 
the programs and making the computations reported 
here. 
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Abstract 

A formalism is developed for estimating phase errors 
during refinement using non-crystallographic sym- 
metry, solvent flattening or density modification. This 
formalism, based on a separation of all structure 
factors into known (best estimate) and unknown (ran- 
dom variable) parts, leads directly to simple 
expressions for the propagation of phase errors dur- 
ing a refinement process. Phase extension and treat- 
ment of unmeasured reflections are readily incorpor- 
ated into this scheme. The formulation provides a 
direct method for evaluating the success of a 
refinement process. This may be useful in cases where 
examination of the resulting electron density map 
does not provide a quantitative evaluation of the 
calculations, such as at low to moderate resolution 
or when phase extension has been used. It may also 
provide a basis for designing optimal refinement 
strategies. 

Introduction 

It is becoming common in crystallographic studies of 
macromolecules to use density modification, non- 
crystallographic symmetry and solvent flattening to 
improve electron density maps or to extend and refine 
initial phase sets. These refinement strategies benefit 
from a weighting scheme in which accurately phased 
reflections are included in the calculation of the elec- 

tron density map with higher weights than poorly 
phased reflections (e.g. Sim, 1959; Bricogne, 1976; 
Rayment, Baker & Caspar, 1983). Estimation of errors 
in the initial phase sets as obtained, for instance, by 
isomorphous replacement, can be calculated taking 
into account observational errors and lack of closure 
(e.g. Blow & Crick, 1956; Dickerson, Kendrew & 
Strandberg, 1961). Errors during refinement have gen- 
erally been estimated by some variation of the method 
put forth initially by Sim (1959) who calculated the 
phase errors resulting from using a partial structure 
for the calculation of structure factors. In most appli- 
cations the electron density map being refined cannot 
be divided into known and unknown regions. Con- 
sequently, the phase error is estimated by some 
measure of the mean discrepancy between calculated 
and observed intensities (e.g. Hendrickson & 
Lattmann, 1970; Bricogne, 1976). Although these 
measures provide good relative estimates of the 
decrease in phase error during refinement (as judged 
from the corresponding electron density maps), they 
are not absolute measures, and the success of a 
refinement procedure is usually based on the inter- 
pretability of the resulting electron density map. This 
leaves open the question of the reliability of the 
results, particularly at low resolution or after phase 
extension. 

In this paper, the reciprocal-space formalism first 
put forward by Crowther (1967, 1969) is used as a 
starting point for deriving simple expressions for 
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